Atividade 6 – Fatores que influenciam as reações químicas

É possível alterar a rapidez com que uma transformação química ocorre?

Conteúdos e temas: variáveis que podem modificar a rapidez de uma transformação química (concentração, temperatura, pressão, estado de agregação e presença do catalisador) e procedimentos experimentais relativos a esse estudo.
Competências e habilidades: organizar, relacionar e interpretar dados para chegar a conclusões sobre as variáveis que podem alterar a rapidez com que uma transformação química ocorre; recorrer aos conhecimentos desenvolvidos sobre as variáveis que podem afetar a rapidez do processo de deterioração dos alimentos para a elaboração de propostas de intervenção solidária na sociedade; reconhecer o papel da Química no sistema produtivo, analisando a importância dos estudos relacionados ao uso dos catalisadores.
Estratégias de ensino: experimentos e questões apresentadas nos roteiros.
Recursos: materiais para a execução dos experimentos; roteiros de trabalho.
Sugestão de avaliação: questões referentes às atividades experimentais desenvolvidas e problemas que
exijam a aplicação dos conceitos aprendidos.

Fatores que influenciam as reações químicas

CONDIÇÕES

Para que ocorra a reação entre duas ou mais substâncias, são necessárias duas condições:

Contato entre os reagentes – É primordial que as moléculas dos reagentes sejam postas em contato do modo mais eficaz possível.

Contato entre os reagentes: Para que as moléculas dos reagentes possam colidir umas com as outras, é necessário que elas entrem em contato.

  1. exemplo, ácidos e bases reagem, pois eles possuem a afinidade química, mas se estiverem em frascos separados, não irão reagir. Sendo assim, é fundamental que as espécies reagentes sejam colocadas em contato para que as partículas que formam seus aglomerados possam colidir umas com as outras, rompendo as ligações que existem e formando novas ligações, o que originará novas substâncias.
  2. exemplo, o sódio é um elemento metálico que reage com o oxigênio, oxidando-se em minutos quando em contato com o ar. Reage também violentamente com a água, como mostra a imagem abaixo:

Reação violenta entre sódio e água quebra recipiente de vidro*
Reação violenta entre sódio e água quebra recipiente de vidro*

Assim, para não entrar em contato com o oxigênio e com a umidade do ar, o sódio metálico é guardado em querosene:

Sódio em querosene para não reagir com o oxigênio e água

  1. Afinidade química: Essa propriedade diz respeito à capacidade que uma substância tem de reagir com a outra, pois mesmo se duas ou mais substâncias forem colocadas em contato, mas não houver afinidade entre elas, não ocorrerá a reação. É fundamental, também, que os reagentes tenham uma certa afinidade química, ou seja, uma tendência natural para reagir. No dia-a-dia, observa-se que algumas substâncias possuem diferentes afinidades químicas com as outras, ou seja, a natureza dos reagentes define se há a possibilidade de reagirem entre si. Por exemplo, o ferro se oxida (enferruja) lentamente quando exposto ao ar; em contrapartida, a oxidação do sódio no ar é muito rápida, devido à afinidade química entre o sódio e o oxigênio — tanto que o sódio é guardado imerso em querosene para não se oxidar. Afinidade química, enfim, é um fator que depende da própria natureza das substâncias envolvidas na reação. Não há afinidade química entre o sódio e o querosene, por exemplo, assim como acontece com um giz deixado exposto no ar, eles nunca irão reagir, porque não há afinidade química entre eles, o giz permanecerá intacto.

Nesse aspecto ainda há outra questão, o fato de que quanto maior a afinidade entre as substâncias, maior será a velocidade da reação.

Por exemplo, ao considerarmos as reações de oxidorredução, essa afinidade corresponde à tendência de ganhar elétrons que um dos reagentes tem e a tendência de perder elétrons do outro reagente.No caso dos metais, eles têm a tendência de doar elétrons, oxidando-se. Quanto maior for essa tendência, maior é a reatividade do metal. Abaixo é mostrada a fila de reatividade dos metais e do hidrogênio.

 

 

 

 

 

Apesar de não ser metal o hidrogênio está na fila de reatividade, pois ele forma os ácidos e, dessa maneira, é possível saber se determinado metal reage com ácidos. Observando cada material formado, percebeu-se que os comportamentos dos metais foram diferentes devido à posição que cada um ocupa na Tabela Periódica, obedecendo a Fila de Reatividade dos Metais.

 

TEORIA DAS COLISÕES

A teoria das colisões ainda prevê que a velocidade da reação depende:
a) da freqüência dos choques entre as moléculas — um maior número de choques por segundo implicará um maior número de moléculas reagindo e, portanto, maior velocidade da reação;

b) da energia (violência) desses choques — uma trombada violenta (chamada colisão eficaz ou efetiva) terá mais chance de provocar a reação entre as moléculas do que uma trombada fraca (chamada de colisão não-eficaz ou não-efetiva);

c) de uma orientação apropriada das moléculas no instante do choque — uma trombada de frente (colisão frontal) será mais eficaz que uma trombada de raspão (colisão não-frontal); esse fator depende também do tamanho e do formato das moléculas reagente

fatores velocidade das reações (Foto: Colégio Qi)Representação gráfica de uma colisão efetiva (Foto: Colégio Qi)

Em um primeiro momento, as moléculas de H (hidrogênio) e de I (iodo) se aproximam rapidamente, em seguida, chocam-se e por fim, quando as moléculas de HI se formam, elas se afastam rapidamente.

Todos os fatores que aumentam a velocidade e o número de choques entre as moléculas facilitarão e, consequentemente, aumentarão a velocidade das reações químicas. Entre esses fatores, podemos destacar: o aumento de temperatura, a participação de outras formas de energia, como a luz e a eletricidade, o aumento de pressão nas reações entre gases, o aumento da concentração dos reagentes que estão em solução, etc.

EFEITOS DA TEMPERATURA

A temperatura é um dos fatores que mais influem na velocidade de uma reação. De fato, um aumento de temperatura aumenta não só a frequência dos choques entre as moléculas reagentes, como também a energia com que as moléculas se chocam. Desse modo, como resultado da teoria das colisões , aumenta a probabilidade de as moléculas reagirem — ou seja, aumenta a velocidade da reação.

Muitos fatos que ocorrem em nosso dia a dia podem servir para demonstrar a relação entre a mudança na velocidade das reações e a mudança de temperatura. Por exemplo, quando aumentamos a chama do fogão para cozer os alimentos mais depressa ou quando usamos a panela de pressão para atingir temperaturas mais altas e acelerar o cozimento; ou, ao contrário, quando usamos a geladeira para diminuir a velocidade de deterioração dos alimentos.

Outro aspecto importante a ser analisado decorre da Termoquímica e diz respeito às variações de energia durante as reações químicas. Neste gráfico, a energia considerada é, em geral, a entalpia. Usualmente, quando há liberação de energia (ΔH< 0), a reação é espontânea. Essas variações podem ser observadas nos gráficos abaixo:

fatores velocidade das reações 2 (Foto: Colégio Qi)fatores velocidade das reações 2 (Foto: Colégio Qi)

Considerando a equação de queima do carvão, temos:
C(s) + O(g) → CO2(g)     ∆H = – 94,1 Kcal

Podemos notar que um pedaço de carvão não pega fogo sozinho. Precisamos aquecê-lo um pouco, até que o mesmo atinja um estado incandescente, neste momento em diante, ele queimará sozinho. Esse “empurrão” inicial é necessário em muitas reações. Como por exemplo, o fato de usarmos um fósforo para acender o gás de um fogão, no motor do automóvel, a faísca da vela detona a gasolina, etc.

O “empurrão” inicial é necessário para levar os reagentes a um estado ativado, em que se forma o complexo ativado. A teoria do complexo ativado, admite que, no instante do choque, ocorre um progressivo enfraquecimento das ligações entre as moléculas iniciais e um fortalecimento das ligações entre as moléculas finais.

Para que o sistema chegue ao complexo ativado, é necessária certa quantidade de energia. Se incluímos essa energia nos gráficos mencionados anteriormente, os mesmos serão representados da seguinte forma:

fatores velocidade das reações 3 (Foto: Colégio Qi)(Foto: Colégio Qi)

Para atingir a elevação correspondente ao estado ativado, as moléculas reagentes devem ter uma energia igual (ou maior) que uma energia mínima chamada energia de ativação (Eat– trata-se da energia mínima que as moléculas devem possuir para reagir ao se chocarem, isto é, para termos uma colisão efetiva).

EFEITOS DA ELETRICIDADE

Do mesmo modo que o calor, a eletricidade também é uma forma de energia que influi na velocidade de muitas reações químicas. Um exemplo é o da faísca elétrica que provoca a explosão da gasolina nos cilindros dos motores dos automóveis. Outro exemplo é o da reação do hidrogênio com o oxigênio, também provocada por uma faísca elétrica, como descrito pela reação abaixo:
2 H2(g) + O2(g)→faísca elétrica→ 2 H2O(g)     ∆H = – 94,1 Kcal

Nessa reação, a faísca elétrica fornece energia para que algumas moléculas de H2 e de Oultrapassem a elevação correspondente à energia de ativação. Como a própria reação libera muita energia, isso será suficiente para desencadear a reação na totalidade das moléculas de He de O2 restantes.

fatores velocidade das reações 4 (Foto: Colégio Qi)(Foto: Colégio Qi)

EFEITOS DA LUZ

Da mesma maneira que o calor e a eletricidade, a luz (bem como as demais radiações eletromagnéticas) também é uma forma de energia que influi em muitas reações químicas. Quando ficamos diretamente expostos ao sol do meio-dia, por exemplo, as queimaduras que sofremos na pele são o resultado da quebra das moléculas formadoras da própria pele. A água oxigenada se decompõe mais facilmente quando está exposta à luz, por isso devemos deixá-la guardada em local escuro. A fotossíntese realizada pelas plantas é um tipo de reação que é influenciada pela presença da luz. Outra reação em que é muito utilizada a luz é a decomposição do AgBr, que dá origem aos filmes fotográficos.


Adicionar aos favoritos o Link permanente.
bbraga

Sobre bbraga

Atuo como professor de química, em colégios e cursinhos pré-vestibulares. Ministro aulas de Processos Químicos Industrial, Química Ambiental, Corrosão, Química Geral, Matemática e Física. Escolaridade; Pós Graduação, FUNESP. Licenciatura Plena em Química, UMC. Técnico em Química, Liceu Brás Cubas. Cursos Extracurriculares; Curso Rotativo de química, SENAI. Operador de Processo Químico, SENAI. Curso de Proteção Radiológica, SENAI. Busco ministrar aulas dinâmicas e interativas com a utilização de Experimentos, Tecnologias de informação e Comunicação estreitando cada vez mais a relação do aluno com o cotidiano.

Deixe um comentário

O seu endereço de e-mail não será publicado.